Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics
نویسندگان
چکیده
The purpose of this study is to give a detailed performance comparison about the feature detector and descriptor methods, particularly when their various combinations are used for image matching. As the case study, the localization experiments of a mobile robot in an indoor environment are given. In these experiments, 3090 query images and 127 dataset images are used. This study includes five methods for feature detectors such as features from accelerated segment test (FAST), oriented FAST and rotated binary robust independent elementary features (BRIEF) (ORB), speeded-up robust features (SURF), scale invariant feature transform (SIFT), binary robust invariant scalable keypoints (BRISK), and five other methods for feature descriptors which are BRIEF, BRISK, SIFT, SURF, and ORB. These methods are used in 23 different combinations and it was possible to obtain meaningful and consistent comparison results using some performance criteria defined in this study. All of these methods are used independently and separately from each other as being feature detector or descriptor. The performance analysis shows the discriminative power of various combinations of detector and descriptor methods. The analysis is completed using five parameters such as (i) accuracy, (ii) time, (iii) angle difference between keypoints, (iv) number of correct matches, and (v) distance between correctly matched keypoints. In a range of 60°, covering five rotational pose points for our system, “FAST-SURF” combination gave the best results with the lowest distance and angle difference values and highest number of matched keypoints. The combination “SIFT-SURF” is obtained as the most accurate combination with 98.41% of correct classification rate. The fastest algorithm is achieved with “ORB-BRIEF” combination with a total running time 21303.30 seconds in order to match 560 images captured during the motion with 127 dataset images.
منابع مشابه
Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملPerformance Analysis of Various Feature Detector and Descriptor for Real-Time Video based Face Tracking
This paper presents the performance analysis of various contemporary feature detector and descriptor pair for real time face tracking. These feature detectors/descriptors are mostly used in image matching applications. Some feature detectors/descriptors like STAR, FAST, BRIEF, FREAK, and ORB can also be used for SLAM applications due to their high performance. However using only one of these fe...
متن کاملSemantic localization in the PCL library
The semantic localization problem in robotics consists in determining the place where a robot is located by means of semantic categories. The problem is usually addressed as a supervised classification process, where input data correspond to robot perceptions while classes to semantic categories, like kitchen or corridor. In this paper we propose a framework, implemented in the PCL library, whi...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.06232 شماره
صفحات -
تاریخ انتشار 2016